Iterative methods for constrained convex minimization problem in Hilbert spaces
نویسندگان
چکیده
منابع مشابه
A General Iterative Method for Constrained Convex Minimization Problems in Hilbert Spaces
It is well known that the gradient-projection algorithm plays an important role in solving constrained convex minimization problems. In this paper, based on Xu’s method [Xu, H. K.: Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150, 360-378(2011)], we use the idea of regularization to establish implicit and explicit iterative methods for finding the approximate ...
متن کاملA New Modified Gradient-Projection Algorithm for Solution of Constrained Convex Minimization Problem in Hilbert Spaces
Manuscript received January 01, 2014; revised March 28, 2014. This work was supported in part by King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia. Cyril Dennis Enyi is with King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia. (corresponding author: +966550782390; e-mail: cenyi@ kfupm.edu.sa). Mukiawa Edwin Soh is with King Fahd University of Petroleum and ...
متن کاملAn Iterative Algorithm of Solution for Quadratic Minimization Problem in Hilbert Spaces
The purpose of this paper is to introduce an iterative algorithm for finding a solution of quadratic minimization problem in the set of fixed points of a nonexpansive mapping and to prove a strong convergence theorem of the solution for quadratic minimization problem. The result of this article improved and extended the result of G. Marino and H. K. Xu and some others.
متن کاملMinimization of Constrained Quadratic Forms in Hilbert Spaces
A common optimization problem is the minimization of a symmetric positive definite quadratic form 〈x, Tx〉 under linear constraints. The solution to this problem may be given using the Moore–Penrose inverse matrix. In this work at first we extend this result to infinite dimensional complex Hilbert spaces, where a generalization is given for positive operators not necessarily invertible, consider...
متن کاملIterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces
In this paper, we propose several new iterative algorithms to solve the split feasibility problem in the Hilbert spaces. By virtue of new analytical techniques, we prove that the iterative sequence generated by these iterative procedures converges to the solution of the split feasibility problem which is the best close to a given point. In particular, the minimum-norm solution can be found via ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2013
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2013-105